Z^(3/2)=8i

Simple and best practice solution for Z^(3/2)=8i equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for Z^(3/2)=8i equation:



^(3/2)=8Z
We move all terms to the left:
^(3/2)-(8Z)=0
We add all the numbers together, and all the variables
-8Z+^(+3/2)=0
We multiply all the terms by the denominator
-8Z*2)+^(+3=0
Wy multiply elements
-16Z^2+3=0
a = -16; b = 0; c = +3;
Δ = b2-4ac
Δ = 02-4·(-16)·3
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$Z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$Z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$
$Z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{3}}{2*-16}=\frac{0-8\sqrt{3}}{-32} =-\frac{8\sqrt{3}}{-32} =-\frac{\sqrt{3}}{-4} $
$Z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{3}}{2*-16}=\frac{0+8\sqrt{3}}{-32} =\frac{8\sqrt{3}}{-32} =\frac{\sqrt{3}}{-4} $

See similar equations:

| w^2-9.5w+21=0 | | w^2-10.5w+27=0 | | 36.2=1.8c+32 | | 4x-20+2x=2x | | 6(4-x)-(6-x)=3x | | 5x+5+3x+5=90 | | 30/45=y/6 | | 12x+8-7x-14=7 | | 12x+6-11x-8=0 | | 2.8q-4.2-4.4q=-0.6q-4.2= | | 7*x-24=11 | | 2.8q-4.2-4.4q=-0.6q-4.2 | | X-0.08x=5121.56 | | 8x+3+5x+9=12x+4= | | 700x=235x+1070 | | 6v+9=4v+27 | | x+42/6+27=38 | | 2x-10=22+x+12=13 | | x+42/6+247=38 | | 3.3q-1.6-4.7q=-0.4q-1.6 | | 0.25x+x+x+3=15 | | 6*6*6*6*6*6*6*6=6^x | | 60=4.2x | | 3(x+4=20+7x | | 120=5.4x | | 20=1.2x | | 6x=3x-60-20 | | 6x=3x-60-29 | | (5y+3)=2y-6 | | 15-3y=5y | | (-3/2)x+3=-2 | | -3x+3=-3x+5 |

Equations solver categories